Şifremi Unuttum

Sitemizden Üyeliksiz Alışveriş Yapabilirsiniz.

Hesaplama
SGK Hesaplamaları
Emeklilik Hesaplama Askerlik Borçlanması Hesaplama Doğum Borçlanması Hesaplama Yurt Dışı Borçlanması Hesaplama Doktora Borçlanması Hesaplama Stajyer Avukatlık Borçlanması Hesaplama Fahri Asistanlık Borçlanması Hesaplama Diğer Emeklilik Borçlanması Hesaplama İşsizlik Maaşı Hesaplama
Sağlık Hesaplamaları
Doğum Tarihi Hesaplama Yaş Hesaplama İdeal Kilo Hesaplama Vücut Kitle Endeksi Hesaplama Günlük Su İhtiyacı Hesaplama Günlük Kalori İhtiyacı Hesaplama Yumurtlama (Ovulasyon) Dönemi Hesaplama Sigara Maliyeti Hesaplama Adet Günü Hesaplama Gebelik Hesaplama
Matematiksel Hesaplamalar
Yüzde Hesaplama Kâr Hesaplama Zarar Hesaplama İndirim Hesaplama Zam Hesaplama Faiz Hesaplama Basit Faiz Hesaplama Bileşik Faiz Hesaplama Standart Sapma Hesaplama Faktöriyel Hesaplama Permütasyon Hesaplama Kombinasyon Hesaplama Desi Hesaplama Alan Hesaplama İnç Hesaplama Mil Hesaplama Altın Oran Hesaplama Rasgele Sayı Hesaplama
Muhasebesel Hesaplamalar
Gecikme Zammı Hesaplama Vergi Gecikme Faizi Hesaplama KDV Hesaplama KDV Tevkifatı Hesaplama Serbest Meslek Makbuzu Hesaplama Gelir Vergisi Hesaplama Brütten Net Hesaplama Netten Brüt Hesaplama Kıdem Tazminatı Hesaplama İhbar Tazminatı Hesaplama Asgari Geçim İndirimi Hesaplama Yıllık İzin Hesaplama Yıllık İzin Ücreti Hesaplama
Eğitim Hesaplamaları
Ders Notu Hesaplama Lise Mezuniyet Puanı Hesaplama Lise Ders Puanı Hesaplama Lise Yılsonu Başarı Puanı (YBP) Hesaplama Lise Sınıf Geçme Hesaplama Lise Ortalama ve Takdir Teşekkür Hesaplama 8. Sınıf Ortalama ve Takdir Teşekkür Hesaplama 7. Sınıf Ortalama ve Takdir Teşekkür Hesaplama 6. Sınıf Ortalama ve Takdir Teşekkür Hesaplama 5. Sınıf Ortalama ve Takdir Teşekkür Hesaplama 5. Sınıf Hazırlık (Yabancı Dil Ağırlıklı) Ortalama ve Takdir Teşekkür Hesaplama 4. Sınıf Ortalama ve Takdir Teşekkür Hesaplama 7. Sınıf İmam Hatip Ortalama ve Takdir Teşekkür Hesaplama 6. Sınıf İmam Hatip Ortalama ve Takdir Teşekkür Hesaplama 5. Sınıf İmam Hatip Ortalama ve Takdir Teşekkür Hesaplama Üniversite Not Ortalaması Hesaplama Vize Final Ortalama Hesaplama Okula Başlama Yaşı Hesaplama
Sınav Puanı Hesaplamaları
OBP Hesaplama DGS Puan Hesaplama ALES Puan Hesaplama TUS Puan Hesaplama DUS Puan Hesaplama YDS Puan Hesaplama ÖYP Puan Hesaplama İSG Puan Hesaplama KPSS Puan Hesaplama EKPSS Puan Hesaplama DİB MBSTS Puan Hesaplama PYBS Puan Hesaplama JANA Puan Hesaplama Ehliyet Sınavı Puan Hesaplama
Dilbilgisi Hesaplamaları
Kelime Sayısı Hesaplama Parmak Alfabesi Hesaplama
Diğer Hesaplamalar
Zekat Hesaplama Şafak Hesaplama Saat Kaç Hesaplama Saat Farkı Hesaplama Burç Hesaplama Klima BTU Hesaplama Sütyen Bedeni Hesaplama Şifre Hesaplama MD5 Hesaplama HTML Renk Kodu Hesaplama Tarih Hesaplama İş Günü Hesaplama Kaç Gün Oldu Hesaplama Kaç Gün Kaldı Hesaplama İki Tarih Arasındaki Gün Sayısını Hesaplama

Permütasyon Hesaplama

Matematik işlemlerinde sıkça karşımıza çıkan permütasyon hesaplama öğrenciler için zaman zaman kafa karıştırıcı olabiliyor. Bizler de bu iş için varız. Aşağıdan kafanız karışmadan rahat rahat permutasyon hesabınızı yapabilirsiniz.

Tüm hesaplama sorularınız için şu numarayı arayabilirsiniz.
0888 228 60 30

KPSS, AÖF, DGS, ALES, YDS, ve Tüm Sınavlara Hazırlık Kitaplarımızı kargo bedeli ödemeden Temin etmek İçin Tıklayınız. 

 

Mobil Online Soru Çözmek, Konu Özeti Çalışmak İçin Şimdi inceleyin.

 

Aöf Çıkmış Sorulara, KPSS, DGS, ALES, YDS, YGS-LYS, sınavlarına, Ehliyet vb. sınavlara, çalışma dökümanlarını Kolayca İndirmek İçin Tıklayınız. 

Hesaplama aracını kullandıktan sonra kafanıza takılan bir çok sorunun cevabını sayfanın aşağısında bulunan tartışma bölümünde bulabilir, dilerseniz sizde yorum bırakabilirsiniz. 
Permütasyon Hesaplama Formu
* Eleman Sayısı (n):
Örn: 7
* Seçim Sayısı (r):
Örn: 3
* Doldurulması zorunlu alanlar

Permütasyon Nedir?

Matematikte permütasyon, bir sıra dizisidir. Bu dizi her sembolün bir ya da bir kaç kere tekrar edilmesi ile elde edilir. Eleman sayısı n olan bir rakamlar kümesinde r kadar eleman seçilerek elde edilebilecek permütasyon kombinasyonsayısını hesaplamak için;

P (n,r)=n!/(n-r)! formülünden yararlanılır.

Permütasyon örnekleriolarak 1′den 10′a kadar olan sayı kümesini n olarak ele alalım. r elemanını da 4 olarak ele alırsak permütasyonların sayısı küme içinde yer alan rakamların oluşturduğu sıra gözetmeksizin 4 değişik elemanlı kümelerin sayısını ifade eder. Sırasız olarak permütasyon sayısının bulunması için P(n, r) =n! (n − r)! formülü kullanılabilir.

Aynı n ve r değerleri için sıralı seçim yapıldığında permütasyon hesaplaması daha farklı olacaktır. Bu hesaplama için seçilen bir rakamın bir daha seçilemeyeceğinin göz önünde bulundurulması gerekir. Bu göz önünden bulundurulmaya göre;

1.İlk eleman için n adet seçenek vardır.

2.İkinci eleman için n(n-1) adet seçenek vardır.

3.r kadar eleman seçmek için n(n-1)(n-2)…(n-r+1) adet seçenek söz konusudur.

Permütasyon Nasıl Çözülür?

Permütasyon çözümleri için yukarıdaki bahsettiğimiz formüller kullanılabilir. Bu formüller ile verilen bir problemi çözmek mümkündür.

Örnek Soru: Farklı renkte 7 mandalın 3’ ü, bir çamaşıra sadece 1 mandal asılmasışarkı ile 3 çamaşıra kaç farklı şekilde asılabilir?

Örnek Çözüm: A kümesi mandallar kümesi ve eleman sayısı 7′dir. n=7… 3 adet mandal takılacak, r=3…

Bu mandallar P(7,3) =7! (7 − 3)!=7!4!=7.6.5.4!4!= 7.6.5 = 210 farklı şekilde takılabilir.

Örnek Soru: Bir otomobilde 5 kişilik yer vardır. (sürücü yeri dahil) 2 sinin sürücü belgesi bulunan beş kişi bu otomobilde kaç değişik biçimde seyahat edebilir ?

Örnek Çözüm:Çözüm için bilinmesi gerekenler; sürücü yerine 2 değişik kişi oturabilir. Diğer yerlere sıra ile 4, 3, 2, 1 değişik kişi oturabilir. Buna göre 2.4! = 48 değişik biçimde oturabilirler.

Örnek Soru: 5 arkadaştan ikisi kızdır. Bunlar 5 kişilik bir bankta oturmak istiyorlar. İki kız daima yan yana oturmak koşulu ile bu banka kaç değişik biçimde oturabilirler ?

Örnek Cevap:Kız öğrenciler A ve B ise (A, B) yi, bir kişi gibi düşünürsek 4 kişi gibi olur ve 4! Kadar otururlar. Ancak (A, B) de (A, B) ve (B, A) gibi iki değişik hal vardır. Çarpma kuralı gereğince; 2! . 4! = 2.24 = 48 değişik biçimde otururlar.

Örnek Soru: 6 kitap, kitaplıkta bir rafa kaç değişik biçimde sıralanabilir?

Örnek Çözüm: P (6,6) = 6! =720 değişik sırada yerleşme söz konusudur.

Bu şekilde farklı sorular ve çözümleri daha da fazlalaştırılabilir. Bu sorular ve çözümleri incelediğinde permütasyon ile ilgili akılda kalan formüller daha fazla yerine oturacak ve daha kalıcı olacaktır.

Permütasyon Ne İşe Yarar?

Permütasyon kombinasyon olasılıkkuantum fiziği gibi alanlarda kullanılır. Biyoloji , tıp, halk sağlığı, meteroloji, tarım, gibi alanlarda bu hesaplamaların kullanılması söz konusu olabilir. Bu bilgilere göre aslında gün içinde çoğu alanda bu tür hesaplamaların yapıldığını görmek mümkün.

Permütasyon ve olasılık tahmini hesaplamaları ile her hangi bir olay ya da hareket hakkında farklı sayıda hesaplama sonucu ortaya çıkar. Bu hesaplamalara göre olay ya da hareketleri önceden belirlemek mümkündür. Matematiksel olarak ortaya çıkabilecek sonuçların değerlendirilmesi için kullanılan bu formüller başta çok karışık gelebilir. Ancak bir kaç kere rakamlar ile uygulandığında daha fazla akılda kalıcı olacaktır.

Hesaplama aracını kullandıktan sonra kafanıza takılan bir çok sorunun cevabını sayfanın aşağısında bulunan tartışma bölümünde bulabilir, dilerseniz sizde yorum bırakabilirsiniz. 

Tüm hesaplama sorularınız için şu numarayı arayabilirsiniz.
0888 228 60 30

KPSS, AÖF, DGS, ALES, YDS, ve Tüm Sınavlara Hazırlık Kitaplarımızı kargo bedeli ödemeden Temin etmek İçin Tıklayınız. 

 

Mobil Online Soru Çözmek, Konu Özeti Çalışmak İçin Şimdi inceleyin.

 

Aöf Çıkmış Sorulara, KPSS, DGS, ALES, YDS, YGS-LYS, sınavlarına, Ehliyet vb. sınavlara, çalışma dökümanlarını Kolayca İndirmek İçin Tıklayınız. 

Copyright 2012 ® Her Hakkı Saklıdır.
studyocrea     web tasarım